
U N I T A R Y S Y M M E T R Y A N D T R A N S F O R M A T I O N v->Tr« 1239 

violate unitary symmetry; and secondly, to com
pare their predictions for rj decay modes other than 
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APPENDIX 

(i) The following identity can be proved by means 
of the commutation relations in Eq. (1): 

-2A£A£- (Af-At)*- (A^-A/Y. (49) 

From (5), (7), and (8), it then follows that 

Similarly, 
AMix =-hA:A- Q+XQ2_K2 

Ax
2A^=iA:A+iYL+iYL^V. 

(50) 

(51) 

The identities in (50) and (51) are the analogs of 
Okubo's identity15 for ^4\3^43

x. 
(ii) Equation (39) is an ad hoc result which applies 

to the states forming a basis for the representation 
U(l, 0, —1) of 17(3). I t can be verified with the aid of 
Tables I and I I , but the author has not found a proof 
for it. 

(iii) For reasons of charge conjugation invariance, 
we require H(cop) to be of the form17 

p°co+wp°. 

Equation (41) is then a simple consequence of Eq. (39). 
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Theory of Spin-f Particles with Parity-Nonconserving Interactions* 
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It is shown that when interactions are not invariant under parity conjugation, both the self-mass term 
(—8fmp\f/) and the term (—a:$yprr6<N'/d%») are induced by the self-interaction of any spin-J particle with 
nonvanishing mass. (For simplicity T invariance is assumed.) When a2>l, the spin-! particle propagates 
in vacuum faster than the velocity of light. When a2—I, the observed mass should be zero. Therefore, it 
follows that a2<l for any spin-J particle with nonvanishing mass. Since l > a 2 > J implies the existence of 
ghost states, one must require a2 ̂  J. Although a has no physical meaning for free particles, as an example, 
it is also shown that it has a physical meaning when a charged particle is interacting with an external electro
magnetic field. The value of a is estimated for the electron and the muon. 

1. INTRODUCTION AND SUMMARY 

TH E purpose of this work is to study the properties 
spin-J particles possess as a result of parity-

nonconserving interactions. To outline our discussions 
given here, we shall tentatively start from the Lagrangian 
density 

r d n 
7M Hwo \K*), (D 

for a spin-J field \j/ with mechanical mass wo, where L2 is 
not invariant under C or P transformation but is in
variant under CP (or T) transformation. For simplicity 
we shall consider only CP-in variant interactions through
out this paper. 

Since the free particle is interacting with its self-field, 
Li does not express the free part of the Lagrangian 
density for the dressed spin-f field considered. When all 

* Work performed under the auspices of the U. S. Atomic 
Energy Commission. 

f On leave of absence from the Research Institute for Funda
mental Physics, Kyoto University, Kyoto, Japan. 

interactions are renormalizable and invariant under 
both C and P transformations, as is well known, 
(Li—bmify) is the free part of the Lagrangian density 
for the dressed particle, where 8m is the self-energy of 
the particle. In our more general case it will be shown in 
Sec. 2 that, in addition to the self-mass term, the self-
interaction induces another term (—a\pyll'yz-d\l//dxll), 
where y£ = 1 and a is a real constant. This term should 
be added to the free part of the Lagrangian density and 
consequently be subtracted from L2, as the self-mass 
term is, to perform the renormalization consistently. 

To discuss the magnitude of the coefficient a of the 
parity-nonconserving counter term, consider the La
grangian density 

(*)[• 
dxu 

ix \\p(x 0 

or the Dirac equation 

(2) 

(3) 
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for the free dressed particle. From (3) we get the energy-
momentum relation 

p2(l-a2)+fi2=0 

for the free particle, where the metric p2=ji2~po2 is 
used. When # 2 > 1 , this particle propagates in vacuum 
faster than the velocity of light. As far as we are con
cerned with covariant theory, this case can never hap
pen. When a2=l, fji2 should be zero, and Eq. (3) reduces 
to the equation for the neutrinos with two components.1 

For any spin-| particle with nonvanishing mass, a2 

should be less than unity. For the last case it will be 
shown in Sec. 2 that a2 ^ f when L2 does not contain the 
term QupypT/s' (ty/dx^) as a primary interaction. When 
l > a 2 > | , "ghost states" exist. 

To perform the renormalization consistently, the 
parity-nonconserving counter term {aypy^yv ty/dx^) 
must be introduced. This will be discussed in Sec. 3. 
The renormalization for the case in which the term 
(X^7M75*^/5xM) is one of primary interactions will be 
discussed in Sec. 4. 

This paper will consider only the spin-| particle with 
nonvanishing mass, i.e., the case a2<l. Now we may 
ask: Has the coefficient a any physical meaning? This 
question arises from the fact that the r matrix defined 
by 

r , = T M ( l + « 7 5 ) / ( l - a 2 ) 1 ' 2 (4) 

satisfies the usual commutation relation 

{r„,i \} = {7„,74=2s„ 

so that Eq. (3) reduces to 

(iTp+mW(p) = 0, (5) 

where m=fx(l — a2)~112. Equation (5) shows that the 
coefficient a has no physical meaning for free particles. 
I t should be noted that the term (ay5) in T^ comes from 
the self-interaction and, therefore, the definition of ^ is 
not ^*r 0 but 1̂ *70, where ^* is the Hermitian conjugate 
of \p. When the former definition \p=\l/*To is misused, the 
Lagrangian density (2) is not a Hermite operator. To 
study whether or not the coefficient has any physical 
meaning when the spin-J particle is interacting with 
other fields, we shall calculate the energy of a charged 
spin-\ particle in an external weak electromagnetic field. 
I t will be shown in Sec. 5 that the coefficient has a 
physical meaning because of the definition of $ men
tioned above. 

1 T . D. Lee and C. N. Yang, Phys. Rev. 105, 1671 (1957); A. 
Salam, Nuovo Cimento 5? 299 (1957); L. Landau, Nuclear Phys. 3, 
1271 (1957). To derive the equation for a two-component neutrino 
from Eq. (3), we shall use the representation 

r - ( £ -0*) . - ( ? 1) «* - ( 0 - 1 ) 
for y matrix and the notation &—1*!1 ) , where <n is 2X2 Pauli 

spin matrix. Then Eq. (3) reduces to 

( l - fa)(crp+^o)^i=^ 2 , 
(1—a)(—ap+po)^2=^h 

which are the desired equations when a2— 1, 

In Sec. 6, a renormalizable example is considered to 
discuss the magnitude of the coefficient a. In the usual 
sense, weak interactions are unrenormalizable. There
fore, in Sec. 7 a cutoff A is introduced and the coeffi
cients are calculated for the electron and the muon. 
Their coefficients are positive definite and nearly equal 
to each other, and a(A)<10~2 when A<300 BeV. 

From Eq. (5), one gets the equal-time anticommu-
tation relation 

{*(*),*(?)> 1 0 = r 0 5 ( x - y ) (6) 

for the field \[/ in interaction representation. I t will be 
shown in Sec. 2 that the equal-time anticommutation 
relation for the field \pH in the Heisenberg representation 
is given by 

a(a+yb)~ 
({*H(*)$H(y)})*\ # 0 = 2 / 0 •*• 0| 1- S(x-y) , (7) 

( l - « 2 ) 
the right-hand side of which is different from that of (6) 
provided that a^O, 

2. RENORMALIZATION 

We shall discuss the renormalization of a spin-J field 
(a2<\) interacting with other fields by renormalizable 
interactions.2 The Lagrangian density of the system is 
given by 

L = L0+L', 

r d 1 
WH(X):, Lo=-:fH(x)\ r 

dxu 

L'~- :L2:+dm: \pH (x)^H (x): 

a 

(8) 

. ; : ^ (x )7 M 75 fa(x):, 
(\-a2)1'2 dx» 

where the symbol \[/H is used for the field yp in the 
Heisenberg representation, the notation :X: means to 
take the normal product of the operators included in X, 
and L2 is given by Eq. (1) in the Heisenberg representa
tion. We shall tentatively assume that L2 does not in
clude the term \ypH(x)ysYs(d/dXp)yl/H(x) as a primary 
interaction. Our proposal in Eq. (8) is that the parity-
nonconserving term 

d \ 
— : ^ < > ) 7 M 7 5 $H(X): ) 

( l - a 2 ) 1 / 2 dx, I 

should be added to L0 and subtracted from L\ as is the 
self-mass term (—5m:^#(#)^#-(V):), in order to per
form the renormalization consistently. 

We shall start with the definition of the modified 
propagator 

< r [M*) f r r60 ]>o= SF'{x-y) 

( - , 

- — / 
dipei'^"'>SF'(p). (9) 

2 The renormalizability of vector meson theories was considered, 
for example, by A. Salam, Phys. Rev. 127, 331 (1962): T, D. Lee 
and C. N. Yang, Phys, Rev, 128, 885 (1962), 
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The improper self-energy part3 2 is related to SF' by where 8m is defined by 

SF'(p) = SF(p)+SF(fi)2(p)SF(p), (10) m 

8m (13) 
where SF(p) is given by (\ — a2Y12 

# iTp—m K ; 

oF{p)~ —i ^ ^ . (Tlj a n ( j Q ^ ^ ) by th e equation of motion 

One may express the improper self-energy part as4 / ^ , \ , / N ^ / N . N 

IV Ym UH(X) = OH(X). (14) 

/

\ dx J 

d\x-y)e-^*-yKT[0H{x)0H{y)-]\ 
Under the assumptions of Kallen5 and Lehmann6 (ex-

_^m__^__ £ jyy Q 2 ) c e P t ^o r t n e m v a r i a n c e under both C and P trans-
(1 —#9-)i/2 ' formations), one obtains (Appendix 1) 

( alm r00 } \ a f \ 
2( /0 = * - S w -+2 / J x 2 [ ( w - x > 1

, + p 2 ] - ^ r ^ T 5 -+25 / dxW\ 

f a 2 r00 I r ( ^ - x ) ( T i / + p 2 + i r ^ 7 5 p 3
/ 

+ i ( * T # + w ) — N / <&Vi' + i (*T£+w)s / dx2 (iTp+m), (15) 
l l - a 2 Jo J Jo £ 2 + r W e 

where z and the spectral functions cr/, p2, and p3 ' are all I t is remarkable that all expressions in Eqs. (18) and 
real. Because of the CP mvariance of L, the terms that (19) are independent of b and c appeared in Eq. (16). 
are proportional to 7s cannot appear in expression (15). This independence comes from the nature of S(^) 
As will be shown in Appendix 1, two spectral functions which is independent of b and c. When Eq. (16) is 
cri and p3 ' may have the forms substituted into the expression (15), the last term in 

/ , , ^ 2 2\ n*\ (15) reduces to 
cri —ai+oo{x2—m2), (16) v J 

Pz=Pz+c8{x2-m2), ^ibz(j/Tp+m^+icziTpyb+iz^irp+m^ 

where o*i and p3 no longer include the 8 function. The 
remaining spectral function p2 does not include the 8 w f ° , i^p-*)<*!+Pt+iTpyspz 

r ,. x / »x2 ur*+w) . 
f u n c t l o n - . . Jo p2+x2-ie 

The renormalization constant z2 for the wave function 
$H(P) is determined by the conditions3 The first and the second terms in this expression are 

SF
fozz2 (17) canceled by the corresponding terms which come from 

IS/(P)SF-KP)1HP)-^(P) , *e
 tf

rd ^ * ? secTd, ter™ V 1 5 ) ' ,respSively; 
F u r t h e r , Jo00 dx2(m—x)(Ti=Joco dx2(m~x)(ri. T h u s , i t 

where the brackets [ ] mean that Sp-1 should be re- has been established that 2(p) is independent of b and c. 
placed by SF' before operating on^(£ ) . From Eqs. (10) Among the many inequalities between the spectral 
and (15) and the condition (17), one obtains functions Pi, one of the more useful ones is 

(18) From the second and the third of Eqs. (18), one obtains 
another expression for z2, namely, 

1-a 2 

dx2lPl+aps]. (21) 

8m=z2 dx2[(m—x)pi+p2+ampi], Pi+aps^O. (20) 
Jo 

zfl= I dx2tpi-apz], 
Jo i — a*^ 

a r00 z2~
1 = / 

= — z2 dx2pz, I —3a2 Jo 
1-a2 Jo 

(19) The renormalization constant z2 should have the physi-
. r (iFp-x)px+p2+irpybpz cal meanings of a probability. Use of the inequality (20) 

bF{p)~ -«fc / dx 2 . > in Eq. (21) leads to the upper bound 
J 0 jp "1 X l€ 

where pi=8(x2-m2)+<rx. a 2 ^ i # ( 2 2) 
3 F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949). 
4 K. Hiida and M. Sawamura, Progr. Theoret. Phys. (Kyoto) 14, 5 G. Kallen, Helv. Phys. Acta 25, 416 (1952). 

167 (1955). e H > Lehmann, Nuovo Cimento 11 i 2 (1954). 
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This is equivalent to write 

\z2 
dx2pz avs. (220 

The range l>a2>\ or the equivalent oo > \z2J0* dx2p3\ 
> J"vJ implies the existence of "ghost states," as in the 
Lee model.7 

From Eqs. (17) and (18) one obtains 

<{M*),frr(y)». 0 I xo^yo 

r a(a+y$) 
1 

\-a2 • ] * (x - y) (7) 

for the anticommutator at equal time xQ=yo. Although 
the anticommutator in interaction representation (6) is 
unequal to that in the Heisenberg representation (7) 
(when a^O), the proportionality of the field operators 
in the two representations 

fa(p) = *2ll2Hp), fa(p) = z2
1I2Hp) 

holds for (iTp-{-tn) = 0. 

3. THE NECESSITY OF INTRODUCING THE 
PARITY-NONCONSERVING COUNTER TERM 

In the preceding section, the concept of the re-
normalization of the parity-nonconserving term was 
introduced. In this section we shall show what happens 
when this concept is not introduced. 

Since this concept is similar to that of mass re-
normalization, we may learn something about the 
former from the latter. Suppose the fictitious case in 
which the concept of mass renormalization has not been 
introduced. Then Eq. (12) is replaced by 

- / • 

Mp) = d*(x-y)e- ip(x-y) 

X<r[Oiff(*)di*60])o-*' iypys, 
(l-a2)1/2 

OIH (x) = 0H (X)—dm\pH (x), 

which leads to 

(23) dx2[_{m~ x)pi+p2+atnpz] = 0. 

Equation (23) means that 

But this is known to contradict the perturbation calcula
tions. The contradiction shows the necessity of mass 
renormalization. 

If we did not know that it was necessary to introduce 
the parity-nonconserving counter term, then we would 

MP)- \ d"{x~y)e-^^y\T[P2H{x)62H{y)~]),~-ibm, 

a d 
~ — T M 7 5 fa(x) , 
( l _ a 2 ) l / 2 ^ 

02H(X) = OH(X) — 

which leads to 

f 
J 0 

dx2ps = 0 . (24) 

Equation (24) was obtained by Sekine and discussed by 
Albright et al.s Contrary to the arguments given by the 
latter authors, however, the spectral function p3 no 
longer contains the 8 function 8(x2—m2). Again Eq. (24) 
means 

which also contradicts the perturbation calculation in 
Sec. 6. This contradiction shows that it is also necessary 
to introduce the parity-nonconserving counter term. 

4. PARITY-NONCONSERVING COUNTER TERM 
AS A PRIMARY INTERACTION 

We have assumed that the parity-nonconserving term 
fa(x)yliy6'dfa(x)/dxlt is not involved in L2. The 
extension of this limitation is to assume that L includes 
the term 

d 
X(l-a2)~^:fa(x)yfiy, fa(x): (25) 

dXp 

as a primary interaction. If the field fa represents a 
charged field with spin J, the Lagrangian density L 
should also include the term 

~ieHl-a2)-^:fa(x)y,y5AH,(x)fa(x): (26) 

as a primary interaction because of the gauge invariance 
of the theory. Then X should be very small. Although 
we do not like to take the parity-nonconserving 
electromagnetic interaction (26) as a primary interac
tion, for completeness we shall describe very briefly the 
results obtained by taking account of the term (25) as 
a primary interaction. 

Both for charged and neutral fields, Eq. (12) is 
replaced by 

MP)--

where 

= [d*(x-•y)e-^-y\TlO,H{x)dZH{y)-])Q 

a+X 
- ibm—i -iypys,, 

1/2 

OZH(X) = OH(X)-

(l-a?) 

X d 
• 7 - —7^75 fa(x). 
( l - a 2 ) 1 / 2 dxp 

7 T . D. Lee, Phys. Rev. 95, 1329 (1954). 

8 The author would like to thank Dr. K. Yamamoto for calling 
his attention (after Sec. 2 above was completed) to the papers of 
Sekine and of Albright et at. [K. Sekine, Nuovo Cimento 11, 
87 (1959); C. H. Albright, R. Haag, and S. B. Treiman, Nuovo 
Cimento 13, 1282 (1959)]. 

file:///z2J0*


S P I N - i P A R T I C L E S W I T H P A R t T Y - N O N C O N S E R V I N G I N T E R A C T I O N S 1243 

Consequently, the third equation in (18), and Eqs. (21) 
and (22) are changed to 

representation (29) for the y matrix into Eq. (27) yields 
the two equations 

= —z2 

1-a2 Jo 
dx2pz, 

1-a2 

Zi~l = 
1 — 3a2—2a\ j 0 

±(\-3a2)^a\. 

dx2[_pi+apz], 

E2ypx= [e0—(wr(p—eA)]^i 
+ [a£—ae0+<r(p--eA)]^2, 

E\\p2 — [f<t>—av (p—ek) ~]\p2 
-\-{aE—ae^+or(p—eA)]^i, 

(30) 

The anticommutator (7) at equal time is changed to 

(a+\)(a+y,)-

where £ i = £ + w ( l - a 2 ) 1 / 2 and £ 2 = £ - w ( l - 0 2 ) 1 / 2 . 
Because of our assumption that the external electro

magnetic field is very weak, we may express ^2 in terms 
of \f/i as 

r (a+XK<H 
<{^(*),^(y)}>o|«o-vo=ro 1 

L 1 —a2 

5(x-y). * / 1 

5. TWO-COMPONENT THEORY IN THE 
NONRELATIVISTIC REGION 

As was shown by Eq. (5), and also will be shown in 
Appendix 2, the coefficient a has no physical meaning for 
free particles. To determine whether or not the coeffi
cient a has any physical meaning when a spin-\ particle 
interacts with other fields, we shall study the equation 
of motion for a charged spin-J particle in a weak external 
electromagnetic field. 

The equation of motion (Appendix 2) is 

{_e4>— aor(p— ek)"} 

X—[aE-fle«+cr(p-«A)>i, (31) 
£1 

which is obtained from the second of Eqs. (30). From 
Eqs. (30) and (31), the equation of motion for \pi can be 
written 

E2—e(j)+a<r(p— ek) — [_aE— ae0+cr(p—eA)] 

(1+^75) 
Hf = E^, 

(l-a2)1 / 2 

where the Hamiltonian is expressed as 

(27) 

» / 1 

EH 
n=0\Ei 

•)" 
X Z ~[_e<t>-aa(v-ek)~] 

X—[aE-a«H-a(p-eA)] 1^ = 0. (32) 
£1 

(1+aTs) (1+075) 
H=tn{3+e<t> ha (p-eA). (28) 

( l _ a 2 ) l / 2 ( l _ a 2 ) l / 2 

It should be noted that the form of Eq. (27) cannot be 
changed to the usual form 

because H'— (1 — 075) (l~a2)~1/2H is not a Hermitian 
operator and cannot be the Hamiltonian of the system. 

To clarify the meaning of the coefficient a, let us 
divide Eq. (27) into two equations of motion, each of 
which concerns only one of the components \p\ or \j/2 of 
the wave function 

~W' 
For this purpose we shall use the usual representation 

- C 0)' "-G - . ) • " - C . "o1)-(29) 

where Q is the 2X2 Pauli spin matrix. Substituting the 

Similarly, the equation of motion for 1̂2 is 

j Ei— e0+aor(p—ek) — [aE—ae<t>+v(v—ek)~] 

:£(—[e*-o«r(p-eA)]) 
«=o\E2 / 

X 

X— [>E-ae0+o-(p-eA)] 1̂2 = 0. (33) 
E2 J 

By the transformation 

E—+—E, p—>— p, and e —>— e, 

Eq. (33) reduces to Eq. (32). Therefore, a particle audits 
antiparticle have the same value of a, including its sign. 

From Eq. (30) or Eqs. (32) and (33), the expressions 

(E2-tn2)\f/i=0 ( t = l , 2 ) (34) 

are obtained for a free particle at rest. Since these 
equations are independent of a, we may take a—0 in 
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Eq. (30) or Eqs. (32) and (33) to obtain the equations of 
motion for the free particle at rest. Then 

( £ - w V i = 0 , (E+nt)\f/2=0. (35) 

Therefore, the equations 

( E + w ) i h = 0 , (E-m)f 2=0 

obtained from Eqs. (34) are singular at a—0. For a 
moving free particle, the expressions 

( E 2 - p 2 - m 2 ) i ^ = 0 ( i = l , 2 ) (36) 

are obtained from Eq. (30) or from Eqs. (32) and (33). 
Again these equations are independent of a; and there
fore, a has no physical meaning for free particles (Ap
pendix 2). In this section we shall consider only the 
positive-energy and negative-energy solutions for xpi and 
^2, respectively, that is, nonsingular solutions at a=0. 

For a changed particle in a weak external electro
magnetic field, we get from Eq. (32) that 

f aE aE 
( E 2 - w 2 ) ( l - 0 2 ) - - E i X - a E F - E i F aEX— 

I Ei £ i 

1 1 aE 1 
- E i F — F - E i F — X aEX—Y 

Ei E, Ei Ex 

1 aE / 1 \ 1 
-aEX—X—+0 - 1 U i = 0 , (37) 

Ei Ei \ E / J 

where X=e<j>~acr(p—eX) and F = — ae<f>+cr(p—eX). 
Because of our assumption that the external field is 
weak, we may neglect the terms 

p2 , (e<j>)2, (eX)2, to)<r(p-*A), etc., 

in comparison with m2. In this approximation it may be 
shown that the left-hand side of Eq. (37) is proportional 
to (1 —a2), which is not equal to zero. Taking the 
positive-energy solution for \f/i reduces Eq. (37) to 

picture, the strengths E and H of the electric and 
magnetic fields are related to <£ and A by 

E=-V</> and H = V X A . 

In terms of these field strengths, the equation of motion 
(38) can be rewritten as 

(p— eX)2 e 
m-\-e<t>-\ orH 

2m 2m 

w [ l + ( l - a 2 ) 1 / 2 ] 
j><r(p-eX)-

tae 

2 w [ l + ( l - a 2 ) 1 2 ] 
-CFE 

2 m [ l + ( l - a 2 ) 1 / 2 ] 2 
(e<I>)2+0\ 

W/J 
(39) 

Thus, it has been shown that the coefficient a of the 
parity-nonconserving counter term has physical meaning, 
at least for a charged particle with spin §. 

The positive-energy solution for fa was taken to 
obtain Eqs. (38) and (39). If the negative-energy solu
tion for \p\ is taken, it follows from Eq. (37) that the 
equation of motion for \[/i is 

(p—eX)2 e 
-m-\-e<$> 1 <FH 

2m 

m[\-(\-a2y/2~] 

n2 

2m 

e<j><r(p—eX)-
tae 

-crE 

a' 

2 w [ l - ( l - ^ ) 1 / 2 ] ' 

2 w [ l - ( l - a 2 ) 1 / 2 ] 

(e<t>)2+o(—)U=E*i, (40) 
W / ) 

instead of Eq. (39). Again this negative-energy solution 
is singular at a = 0 . In the same approximation, the 
negative-energy solution for 1̂2 is 

f (p-eX)2 e 
\ — m-\-e<$> 1 <rH 

2m 2m 

E\f/i= \m+e<j>-\ o-(p— eX)*o(p— eX) 
I 2m 

2 m [ l + ( l - a 2 ) 1 / 2 ] 

a2 

[_e<t>a(p— eA)+or(p— eX)e<j>~\ 

2mtl+(l-a2y 
<e<t>)2 

+o(—)Ui=H'4,1. 
\m2J\ 

(38) 

I t is evident that our new Hamiltonian H' is a Hermitian 
operator. Since Hf was obtained without assuming 
a 2 « l , Eq. (38) holds for a2<l. In our Schrodinger 

+ ̂ [ l + ( l - a 2 ) 1 / 2 ] 

a2 

2 w [ l + ( l - a 2 ) 1 / 2 ] ' 

-e0(r(p—eX)-\- -crE 
2 m [ l + ( l - a 2 ) 1 / 2 ] 

(ecj>)2+o(—)W=E*2. (41) 
\m2J J 

I t is remarkable that the coefficient of the parity-
nonconcerving counter term is an observable. 

6. A RENORMALIZABLE EXAMPLE 

In this section we shall calculate the spectral func
tions pi in the lowest order approximation of perturba
tion theory. As an example, we shall adopt here the 
following model which was considered by Sekine.8 Two 
spin-| fields xpH and XH interact through a spin-0 field <t>n 
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by the Lagrangian density, L0 being given by Eq. (8) and V by 

Z/ = - : XH(X)\T/ +m,\XH(x): + : <PR*(*)[D - M 2 ] ^ W : +:$H(x)[£i+gm]*H(x)<pH*(x): 
L dXp J 

+ : XH(x)Zgi—g2yb}pH(x)(pH(x): +dm: ^H{x)ypH{x): +5m' : x#(X)XH(X) : +5ju2: ^ ( a ) : 

+\t:<PH*(x):+a(l-a2)-l/2:$H(x)y»yb—^^HW:+a,(l-a2)-1/2:XF(x)7M75 XH(*):, (42) 

where the coupling constants gi and g2 are real and 1 
X ( X ) = - - - ^ - ( W , + M ) ] 

(l+a'Ys) (4TT)2 

I V = YM . 
( l - a ' 2 ) 1 / 2 [ ( ^ 2 - m , 2 - / x 2 ) 2 - 4 w , V ] 1 / 2 

X 
For stability of three fields, we shall assume the triangle xz 
relations 

mKm'+fXy mf<m+fjLj y.<m-\-m'. (43) From Eqs. (48) and (A3), one gets 
From the Lagrangian density, the operator OR{X) de- l r 
fined by Eq. (14) is given by <n= 1 (gi2+g22)(x2+m2) 

f /v2 — AM*. \2 I 

0H(x) = [gi+g2yb]xH(x)<pH*(x)+8ni\l/H(x) 
d (x2+mf2—n2) 1 

+ a ( l - a 2 ) - 1 / V Y 5 — f / / W . (44) X — + 2mm,(g1
2-g2

2) \X(x), 
dXy, 2x J 

From the definition of the spectral functions A t- given i r (x2_|_w/2_^2) 
by the expression (Al), it follows that P2=- 1 (gi2+g22) (49) 

. r (x+m)2{ 2x 

(27r)Sj -tn'igf-gMxix), 

X / dx2d(p2+x2) (x 2 +w' 2 - M
2 ) 

Jo P3=glg2 -—X(X). 
Xl(iTP~x)A1+A2+iTpy,Ai\. (45) x2{x2-m2) 

On the other hand, in the lowest order of the coupling I t is evident that Jo° dx2pz5*0. 

constants At high energies the renormalized spectral functions 

(0H(x)dH(y))o= (gi+g*Y*)(x(x)x(y))o i n t h e l o w e s t o r d e r o f c o u P l i n S constants behave as 

X(gi-gm)(<P*(x)<p(y))o. (46) (gi2+g2
2) 1 

The two expressions (45) and (46) leads to the equation <Tl ̂  7Z~2 \~> 

in the momentum space, 

e(p0)l(iTp-i-p2j/2)A1+A2+irpybAz] (gi2+g22) i 

327T2 X = I d"k6(po-h)d(ko)dl(p-k)2+m,22dlk2+^ 
(2TT)3 J (2wyJ glg2 1 

X (gi+g2y,)[iT(p-k)-mf'](g1-g2yb) (47) P3 « — ~ , 

for f?<0. Performing the & integration in the above 
expression leads to which show the logarithmic divergence of 8m, z<rl and 

2_i_ /2_ 2 Jo* dx2p%. We now assume that the present theory in 
Ax= (gi2+g22) X(x) ^ a c t ^ a s ^ e divergent nature indicated by the lowest 

2x2 ' order calculations, and further assume that the rough 
{ x2jL.mf2_ 2 . magnitudes of the exact spectral functions are given by 

A2= I (gi2+£22) w'(gi2—g2
2) \X(x), Eq. (50). Then the conditions (22) and (22') are satisfied 

I 2x J when 
x2+tn'2—n2 

As= -glg2 ~X(x), (48) £ 2 L r~ 
> v 3 o r 

1 
<—. 

V3 
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7. ON THE ELECTRON AND THE MUON 

In the usual sense, weak interactions are unre-
normalizable, and our renormalization procedure de
scribed in Sec. 2 is not applicable to them. To estimate 
the rough magnitude of the coefficients ae and a^ for the 
electron and the muon in the lowest order of the weak 
coupling constant, therefore, we shall introduce a cutoff 
energy A. 

When an intermediate vector boson is introduced, the 
Lagrangian density for weak interactions is usually as
sumed to be given by 

Lwcak = ig\pe>H(x)ya^(l+yb)\pVe,H(x)(pa>H(x) 

+ h$»,H(xhai(l+yb)lpv>i,H(x)<Pa,H(x) 

+Hermite conjugate, (51) 

where \pe, \p», <pa, $Ve, and ^„M represent the electron, the 
muon, the boson, and the neutrinos associated with the 
electron and the muon, respectively. To calculate the 
coefficients ae and a^ to the order g2, it is enough to use 

1+75 
Oe,H(x) = igya ^ye(x)(pa(x)+dme\f/e(x) 

2 

ae d 
+ ~ 7«75 te(x) , 

1 + 75 
Ofi,H(x) = igya ypvlx{x)ipa{x)Jrbmllyplx{x) 

#M d 
+~ ~—7«75 ^ W J 

(1-a , 2 ) 1 ' 2 dxa 

(52) 

for the electron and the muon, respectively. To calculate 
the spectral functions pi and p2, it is necessary to add the 
terms concerned with electromagnetic interactions to 
the above expressions. 

From Eqs. (45) and (52), one obtains 

d(po)iTpybA 

k2 

(2*Y 
d'ke{p^h)d{h)bl{p-k)^blk2+MB

2'] 

kakf 
XyaT(p-k)y? 

75f kakfl~[ 

2 L MB2 J 
(53) 

instead of Eq. (47), where MB is the boson mass. 
Performing the k integration in Eq. (53) and using the 
definition (A3) leads to 

g2 (x2-MB
2)2(x2+2MB

2) 
pa= 6{x2-MB

2) ^ 0 , (54) 
64x2 MB

2(x2-<m2)x* 

where m is the mass of the electron or the muon. The 
electron and the muon have no strong interaction. 
Therefore, the renormalization constant z^ for them 

would be very close to unity when a cutoff energy A is 
introduced. Since the coefficient a is proportional to the 
weak coupling constant g2, it follows that a ( l —a2)~1/2 

« a < s l . Taking these conditions into account, one gets 
both for the electron and the muon 

de — Uu 

A2
 g2 A2 

dx2
Pz~ > 0 , (55) 

MB' (8TT)2 MB2 

where A2»Af B2 is assumed. 
When the intermediate boson does not exist, the 

Lagrangian density (51) is replaced by 

Gr (I+TB) 
£weak = ^e,H(x)ya- 4>v 

v2L 2 
UH(X) 

from which 

Xlypni,H(x)yai(l+yb)\f/li,H(x)2 

+Hermite conjugate, (56) 

Oe,H(x) = —ya%(l+yb)\{/t,e,H(x) 

. V2 

x [ ^ M , f f W 7 « K i + 7 5 ) ^ , f f W ] 

de 6 
+dme\f/e>H(x)-i 7«75 rpetH(x) (57) 

(l-a2)1'2 dxa 

is obtained. 
For the electron one gets 

d(p0)irpybA3 

G2 1 

2 ( 2 T T ) 6 

XdKp-kyjKk-qY+nifidtq^ 

Xyafy(p-k)yd(l+yb)Sp{&l+yb) 

X\jy(k-q)-mll']y^(\+yh)iyqya) . (58) 

Since this expression diverges, we shall introduce the 
cutoff factor 0(A+go) into the integrand. Long but 
straightforward calculations show that 

yjy(p—k)yffe{\+yi) 

XSp{U^+yb)Lh(k-q)~mfJiy^(l+yb)iyqya}8(q2) 

= 4[k2-pk+pq-kqyyq(l+yb)8(q2). (59) 

Substituting Eq. (59) into Eq. (58) and introducing the 
cutoff factor, one gets 

0(po)iTpybAz 

G2 

(2wY h kdiqd(p0-ko)e(k0-q0)e(-qa)e(A+q0) 

XSZ(p-k)^8t(k-qy+™Wl<f} 
X [ 2 / . ? - ^ - w M

2 ] i 7 ? 7 5 (60) 



S P I N - J P A R T I C L E S W I T H P A R I T Y - N 

to the order G2. This leads to 

P 3 ~ — 
G2 A3[2*+3A] 

-0(#—mM) , 
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manner that all terms appearing in the expanded ex
pression are CP invariant. The result is 

24(2TT) 
(61) 

where m^ and me are neglected except for the factor 
B{x—m^). The expression (61) gives 

G2 / A2 4\ 
ae~ A 4 ( l n — + - ] > 0 . (62) 

8(2TT)4 \ m2 3 / 

The magnitude of the coupling constant is 

Vlg2 4X10~5 

~MB
2~ MN

2 ' 

where MN is the nucleon mass. With this value of the 
coupling constant, the coefficient ae of the electron is 

/ 
d*(x-y)e-i^-«\TtOH(x)OH(y)~])o 

A* (x+m)Al-A2 r^ A 
-Tpybl dx2-= — 11 dx2 

'o {x2—m2) •f 
J o 

(x2—m2) 

+i(iTp+m) I dx' f. 
A* (x+m)2Al-2mA2 

+i(iTp+m) / dx2-f 
Jo 

(x2—m2)2 

1 

10~5 / A -& / A y 
Tr)2\MN) v5(4 

when the intermediate boson exists, and 

2X10- 1 0 / A 

(2TT)4 \M. 

. \ 4 r A2 4 i 
- ) I n — + -
NJ L wM

2 3 J 

(63) 

(64) 

(p2-\-x2—ie) (x2—m2)2 

X{(iTp-x)l(x+m)2Ai-2mA2] 

+ {x-m)2A2- (x2-m2)iTpybAz} (iTp+m). (A2) 

Introducing the new notations 

1 

when the boson does not exist. On the assumption that 
A<300 BeV, both expressions (63) and (64) give 

0<ae<lQr2. 
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APPENDIX 1: DERIVATION OF EQ. (15) 

Under the same assumptions (except for the invari-
ance under C or P transformation) as Kallen5 and 
Lehmann6 have made, one may obtain 

Z(Ti 

zp2= 

m 

(x2—m2)2 

A2 

(x-\-m)2 

A, 

[_{x+m)2A1-2mA2~], 

(A3) 

(x2—m2) 

and substituting Eq. (A2) into (12) leads to the ex
pression (15). Although the spectral functions A * do not 
include the 8 function 5(x2—m2), the renormalized func
tions (T\ and pz may include the 5 function because of 
their definition (A3). This possibility was discussed in 
Sec. 2. 

APPENDIX 2. QUANTIZATION OF THE FREE FIELD 

The Lagrangian density for a free spin-J field is 

d 
LQ= — :$(x) Tlr—+m L(a?): 

L dx^ J 
(A4) 

d*(x—y)e —ip(x-y), {T[pH{x)0H{y)-]\ 

— % i dx2 

'o p2+x2 — ie 

Xl(iTp-x)A1+A2+iTpybAz'], (Al) 

where the A i are all real functions because of the CP 
invariance of L, and the cutoff A for massive inter
mediate states is introduced to avoid possible di
vergences. 

To perform the renormalization, the expression (Al) 
will be expanded in powers of (iTp+m) in such a 

where the definition of \p is not \f/*To but ^*Yo, and \p* is 
the Hermitian conjugate of \p. Because of this definition 
of $, the quantization of the free field is a little different 
from that in the usual case and the Schrodinger equation 
for the free particle has the unusual form (27). 

When expanded into positive-frequency and negative-
frequency parts, the expression for \l/(x) is 

\f/(x)--
1 r / m \1 / 2 

(2TT)3/2J \EV) 

X L {exp(ipx—iEpx0)aM(p)/7M(p) 
M=l,2 

+ e x p ( - * p x + * E , * b ) V ( p ) y > ( p ) } , (A5) 
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where Ep= (p2+m2)1/2, £ „ means the summation over 
all possible spin states, and the spinors U and V satisfy 

(A6) 
(irP-T<>Ep+m)U>'(p) = 0, 

(irp-V0Ep-m)V>'(p) = 0. 

As in the usual case. Q/n and b^ will be quantized as 

{«M(P),«/(P')} = {*M(P)A*(P,)} = M ( P - P ' ) , (A7) 

and the other anticommutators are zero. Further we 
shall take the conditions for the orthonormality of the 
spinors U, V and their adjoint spinors U, V in the form 

f > ( p ) t f " ( p ) = - " f * ( p ) ^ ( p ) = S„ . (A8) 

From Eqs. (A6) and (A8) one may obtain a number of 
relations for quadratic form in the spinors, the most 
important of which are 

*7«*(p) 
(1+ffTs) 

(1-a 2 ) 1 ' 2 

(l+07«) 

U'bWtoy 
(l+flT») 

( i - « 2 ) 1/2 

E1 

( l - a 2 ) 1 / 2 

E EV(P)EV(P)=-
M=l,2 

(l+a-ys) 
F - ( - p ) = F"*(p)- _ j 7 ' ( - p ) = 0, 

E TV(p)fV(p) = -

(1-0 2) 1 ' 2 

(irp—T0Ep—m)ap 

2m 

(irp-TQEp+tn)ap 

2m 

(A9) 

Using the usual canonical formalism, we may express 
the dynamical variables of the free field in terms of 
operators a^ and b^ The results are exactly the same as 

those of the usual case in which L0 is invariant under 
both C and P transformations. For example, the 
Hamiltonian of the system is given by 

r (l+tfYs) d 
H=i I dx:\fr*(x) 4,(x):, (A10) 

( l - a 2 ) 1 ' 2 ^ 

which has the same form as Eq. (27). By use of Eqs. 
(A5), (A7), and (A9), the Hamiltonian can be expressed 
in terms of #M and #M in the form 

H-Z # ^ / ( P K ( P ) + V ( P ) M P ) } . 

From Eqs. (A5)-(A9) one obtains 

{2irfJ 

X(irp-m)ap8(p2+m2) 

for the anticommutation relation, 

Wa(x),h(y)}xo=Vo= (T0)a$(x-y) (6 ) 

for the equal-time anticommutation relation, and 

<r[^«(s)fo(;y)]>o= -SFa(s{x-y) 

i r (iTp—m)ap 
,eip(x-y) ( ^ ) 

(2-n-yj " p2+m0-ie 

for the propagator of the field. 


